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LE'ITER TO THE EDITOR 

Exact results for an O(n) model in two dimensions 
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t Institut d e  Physique Thtorique, Ecole Polytechnique FCdCrale, Lausanne, Switzerland 
$ Department of Physics, Northeastern University, Boston, MA 02115, USA 

Received 17 August 1988 

Abstract. As a step toward proving the generally held belief that the two-dimensional O(n) 
model exhibits no phase transition for n 3 3, we consider a special O ( n )  model on the 
honeycomb lattice and establish a rigorous lower bound on n such that the free energy of 
the O( n )  model is analytic for all n above this bound. 

The O( n )  model, first introduced by Stanley (1968) as a means of realising the spherical 
model by taking the n + 00 limit, has been a subject of increasing recent interest. The 
partition function of the O ( n )  model is 

zn={ l - I~B(S , ,SJ ) r IdSk  k (1) 
(I J )  

where S, is a classical n-component vector of length h located at the ith site and 
B(S, ,  S, ) is the nearest-neighbour Boltzmann factor. We have for the true O ( n )  model 

B(S,  S ' )  = exp( KS * S')  (2) 
and we shall assume the normalisation d S  = 1. 

Several years ago, Domany et a1 (1981) established the following result for the 
honeycomb lattice. They showed that if the Boltzmann factor takes the special form 

B(S,  S ' )  = 1 + x s .  S' (3) 

Z , (X)  = E  xbn'. (4) 

then the partition function (1) can be expanded into a graph-generating function 

G 

Here the summation is taken over all graphs G (on the lattice) consisting of b bonds 
and 1 non-intersecting loops. It is clear that if we take (3) as the given definition of 
the Boltzmann factor, then the positivity of the Boltzmann factor requires x to be in 
the range 

O < x < l / n .  ( 5 )  

Indeed, both the partition function (4) and the range ( 5 )  for x can be realised in some 
O( n )  models. For instance, consider a discrete O( n )  model and regard it as the (n ,  2) 
model considered by Domany and Riedel(l979). In their notation and in the subspace 
of ecz(l +eC') = 2, it is straightforward to verify that the O ( n )  partition function is 
given precisely by (4) with x = n-' tanh( C,/2) which is in the range (5). The O ( n )  
partition function (4) also arises in the modelling of critical roughening of surfaces 
(Rys 1986) with x in the range 

O < x < l .  (6) 
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It appears that, in all physical applications (see also the discussions below) of the 
partition function (4), the range of x is always bounded from the above. This is a 
crucial fact we shall use in our analysis. In the ensuing discussions we shall use (4) 
as the definition of our O( n )  partition function with x bounded. 

Using the analogue of a Coulomb gas, Nienhuis (1982,1984) was able to determine 
the critical behaviour and the critical point of the partition function (4) for -2 s n s 2. 
For integral n 5 3 for which the Nienhuis analysis does not apply, it is generally 
believed that the O( n )  model in two dimensions does not have a phase transition. But, 
to our knowledge, a rigorous proof of this statement has been lacking. In this letter 
we give some positive results on this unresolved problem. 

Consider the O( n )  partition function (4) for the honeycomb lattice. First, we note, 
as in Nienhuis (1982, 1984), that there exists a one-to-one correspondence between 
directed polygonal configurations on the honeycomb lattice and ice-rule configurations 
on its surrounding (KagomC) lattice. The six ice-rule vertex configurations are shown 
in figure 1 where, for the purpose of orientation, the hexagonal faces of the KagomC 
lattice are identified by corners of 120". The above-mentioned mapping of configur- 
ations is most easily seen by adopting the following convention, which avoids the 
introduction of the intermediate SOS model used by Nienhuis (1982,1984). Draw a 
bond (on the honeycomb lattice) and direct it in the direction of the ice-rule polarisation 
for vertices of types (1) and (2). A typical global mapping between the configurations 
obtained in this fashion is shown in figure 2. 

Figure 1.  The six vertex configurations on the Kagomt lattice. 

Figure 2. A mapping between a directed polygonal configuration on the honeycomb lattice 
and an ice-rule configuration on the Kagom6 surrounding lattice. 
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Consider next the ice-rule model with vertex weights 

{a1,. . . , U,} = (7, T,  I ,  I ,  e-2”, e2’}. ( 7 )  

Then, following Nienhuis (1982, 1984), by associating factors e-” and e” to left- and 
right-turning ice-rule arrows about corners of 60” and recollecting these factors globally, 
one obtains the elegant equivalence 

&,(T, 7, 1, 1, e-2’, e’’) = ( 2  cosh 3A)NZ,,(~)  (8) 

where 

n = 2 cosh 6A T = 2x cosh 3 A  (9) 

N is the number of sites of the honeycomb lattice and Z,, is the partition function of 
the six-vertex ice-rule model with weights shown therein. 

The Z,, in (8) can be rewritten by taking out a common factor T for each of the 
3 N / 2  vertices of the KagomC lattice, resulting in 

z,,(T, T, I ,  1, e-2‘, e2A) = 73N/2z6,( 1 , 1 ,  x,, x,, c,z, c,z-’) (10) 

x, = c, = 7-1 z = e-2’. (11) 

with 

The new Z,, on the RHS of (10) is of precisely the form of Hintermann et a1 (1978) 
who considered the zeros of the ice-rule partition function. Using the result established 
in the appendix to Hintermann et a1 (1978), we arrive at the conclusion that, in a 
(generally complex) neighbourhood of real z and 7 satisfying Re A > 0, the partition 
function Z6Jl, 1, x,, x,, c,z, C,Z-’) is free of zeros in the region 

( Z I  < [1 + ( 1  + 171)2]1’2- 1 - 171. (12) 

Combining (8)-( 1 l ) ,  (12) then implies the analyticity of the free energy of the O( n )  
partition function (4) in the region 

12xcosh3AI<sinh4(ReA)-l. (13) 

This is our main result. 
Clearly, the bound (13) is applicable only for n > 2  for which A > O .  In O(n) 

models, where the variable x is restricted to a range O<x<xo, this yields a lower 
bound on n obtained from (13) by replacing x with xo. Thus, this bound depends 
explicitly on the value of xo. Particularly for xo = n-’ and xo = 1,  we find that the free 
energy is analytic, and consequently the O( n) model (4) exhibits no phase transition for 

n > 6.025 for 0 < x < l / n  (14) 

and 

n > 115.636 for O <  x < 1.  (15 )  

These conclusions are consistent with the conjecture of the absence of a transition for 
n 3 3 .  

Finally, we discuss the relevance of our results on the true O ( n )  model (2). We 
have already seen that the range (5) ,  and hence the bound (14), is exact in a special 
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subspace of the discrete O ( n )  model. For the true O ( n )  model (2), however, we may 
regard (3), and hence (4), as some form of an approximation. One way to effect 
this approximation is to require identical value for the expectation value 
5 S .  S’B(S, S ‘ )  d S  dS’ / j  B(S,  S ’ )  d S  dS’ evaluated using B(S,  S ’ )  given by either (2) 
or (3). In this way one is led to 

5 S S‘ exp( KS - S ’ )  d S  dS’ 
X =  

n exp( KS - S’)  d S  dS’ 

an expression relating x to the physical temperature K. The expression (16) is exact 
for n = 1. It is also reasonably accurate in determining the critical x, for other values 
of n. For n = 2, e.g., using the Monte Carlo data of K ,  = 1.085 for the square lattice 
(Minnhagen and Nylen 1985), we obtain from (16) the critical x,=O.7238. This is to 
be compared with the exact value of xc= 1 / d =  0.7071 for the honeycomb lattice (Wu 
1979, Domany et a1 1981, Enting and Wu 1982). It should be noted that (for K > 0) 
the value of x given by (16) lies in the range 0 < x < 1 so that it is the bound (15) that 
applies in this approximation. 

This research has been supported in part by the Fonds National Suisse de la Recherche 
Scientifique and NSF grant no DMR-8702596. 
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